Source code for node_unpivot_table

# -*- coding: utf-8 -*-
# Copyright (c) 2019, Combine Control Systems AB
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#     * Redistributions of source code must retain the above copyright
#       notice, this list of conditions and the following disclaimer.
#     * Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#     * Neither the name of the Combine Control Systems AB nor the
#       names of its contributors may be used to endorse or promote products
#       derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED.
# IN NO EVENT SHALL COMBINE CONTROL SYSTEMS AB BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from sympathy.api import node as synode
from sympathy.api import node_helper
from sympathy.api.nodeconfig import Port, Ports, Tag, Tags, adjust

import pandas as pd


[docs]class UnpivotTable(synode.Node): """ Unpivot a Table. The inverse operation of Pivot Table. The operation transforms data from a wide to a narrow format. The wide form can be considered as a matrix of column values, while the narrow form is a natural encoding of a sparse matrix. When the data types of value columns differ, the varying data is converted to a common data type so the source data can be part of one single column in the new data set. """ name = 'Unpivot Table' nodeid = 'org.sysess.sympathy.data.table.unpivottablenode' author = 'Emil Staf' version = '0.1' icon = 'pivot_table.svg' tags = Tags(Tag.DataProcessing.TransformStructure) inputs = Ports([Port.Table('Input Table', name='Input')]) outputs = Ports([Port.Table('Output Table', name='Output')]) parameters = synode.parameters() parameters.set_string('index', label='Index column', value='', description='Column that contains a unique identifier for each row', editor=synode.editors.combo_editor(include_empty=True, edit=True)) def adjust_parameters(self, node_context): adjust(node_context.parameters['index'], node_context.input['Input']) def execute(self, node_context): in_table = node_context.input['Input'] if in_table.is_empty(): return columns = node_context.input['Input'].column_names() out_table = node_context.output['Output'] parameters = node_context.parameters df = in_table.to_dataframe() # order the columns to match order in in_table df = df[columns] # Find index column index_col = parameters['index'].value if not index_col: df['index'] = df.index index_col = 'index' # value_vars = df.loc[:, df.columns != index_col] value_vars = [c for c in columns if c != index_col] # Unpivot happens here df_out = pd.melt(df, id_vars=[index_col], value_vars=value_vars) # rename to match Pivot Table df_out = df_out.rename(columns={'variable': 'Column names'}) # Create new table from DataFrame out_table_df = out_table.__class__.from_dataframe(df_out) # Write to output table out_table.source(out_table_df) # set table name using in table out_table.set_name(in_table.get_name())
[docs]@node_helper.list_node_decorator(['Input'], ['Output']) class UnpivotTables(UnpivotTable): name = 'Unpivot Tables' nodeid = 'org.sysess.sympathy.data.table.unpivottablesnode'