# This file is part of Sympathy for Data.
# Copyright (c) 2022, Combine Control Systems AB
#
# SYMPATHY FOR DATA COMMERCIAL LICENSE
# You should have received a link to the License with Sympathy for Data.
import sklearn
import sklearn.cluster
from sympathy.api import node as synode
from sympathy.api.nodeconfig import Ports, Tag, Tags
from sylib.machinelearning.model import ModelPort
from sylib.machinelearning.abstract_nodes import SyML_abstract
from sylib.machinelearning.clustering import KMeansDescriptor
from sylib.machinelearning.descriptors import Descriptor
from sylib.machinelearning.descriptors import BoolType
from sylib.machinelearning.descriptors import FloatType
from sylib.machinelearning.descriptors import IntType
from sylib.machinelearning.descriptors import NoneType
from sylib.machinelearning.descriptors import StringSelectionType
from sylib.machinelearning.descriptors import UnionType
from packaging import version as pversion
sklearn_version = pversion.parse(sklearn.__version__)
def _kmeans_clustering_info():
model_info = [
"Model",
{'name': 'n_clusters',
'dispname': 'Number of clusters/centroids',
'type': IntType(default=8)},
{'name': 'n_init',
'dispname': 'Number of runs',
'type': IntType(default=10)},
{'name': 'init',
'dispname': 'Initialization method',
'type': StringSelectionType(
['k-means++', 'random'], default='k-means++')},
{'name': 'algorithm',
'dispname': 'K-means algorithm',
'type': StringSelectionType(
['auto', 'full', 'elkan'], default='auto')},
]
solver_info = [
"Solver",
{'name': 'max_iter',
'dispname': 'Maximum number of iterations',
'type': IntType(default=300)},
{'name': 'tol',
'dispname': 'Tolerance',
'type': FloatType(min_value=0, default=1e-4)},
]
# TODO: Older versions could create additional parameters. Consider
# to add migrations.
# if not sklearn_version >= pversion.Version('0.23.0'):
# solver_info.extend([
# {'name': 'precompute_distances',
# 'dispname': 'Precompute distances',
# 'type': UnionType([
# StringSelectionType(['auto']), BoolType()],
# default='auto')},
# {'name': 'n_jobs',
# 'dispname': 'Number of jobs',
# 'type': IntType(min_value=-1, default=1)},
# ])
solver_info.append(
{'name': 'random_state',
'dispname': 'Random seed',
'type': UnionType([NoneType(), IntType()], default=None)},
)
return [model_info, solver_info]
[docs]
class KMeansClustering(SyML_abstract, synode.Node):
name = 'K-means Clustering'
author = 'Mathias Broxvall'
icon = 'dataset_blobs.svg'
description = (
'Clusters data by trying to separate samples in n groups of equal '
'variance')
nodeid = 'org.sysess.sympathy.machinelearning.k_means'
tags = Tags(Tag.MachineLearning.Unsupervised)
descriptor = KMeansDescriptor()
descriptor.name = name
info = _kmeans_clustering_info()
descriptor.set_info(info, doc_class=sklearn.cluster.KMeans)
descriptor.set_attributes([
{'name': attr_name} for attr_name in [
'cluster_centers_', 'labels_', 'inertia_'
]], doc_class=sklearn.cluster.KMeans)
parameters = synode.parameters()
SyML_abstract.generate_parameters(parameters, descriptor)
inputs = Ports([])
outputs = Ports([ModelPort('Model', 'model')])
__doc__ = SyML_abstract.generate_docstring(
description, descriptor.info, descriptor.attributes, inputs, outputs)
def execute(self, node_context):
model = node_context.output['model']
desc = self.__class__.descriptor
model.set_desc(desc)
parameters = node_context.parameters
kwargs = dict(
n_clusters=parameters['n_clusters'].value,
n_init=parameters['n_init'].value,
init=parameters['init'].value,
algorithm=parameters['algorithm'].value,
)
kwargs = self.__class__.descriptor.get_parameters(
node_context.parameters)
# Parameter value 'auto' and 'full' changed to 'lloyd' in 1.1.0
algorithm = parameters['algorithm'].value
if (sklearn_version >= pversion.Version('1.1.0') and
algorithm in ["auto", "full"]):
kwargs['algorithm'] = 'lloyd'
else:
kwargs['algorithm'] = parameters['algorithm'].value
skl = sklearn.cluster.KMeans(**kwargs)
model.set_skl(skl)
model.save()
[docs]
class MiniBatchKMeansClustering(SyML_abstract, synode.Node):
name = 'Mini-batch K-means Clustering'
author = 'Mathias Broxvall'
icon = 'dataset_blobs.svg'
description = (
'Variant of the KMeans algorithm which uses mini-batches to reduce the'
' computation time')
nodeid = 'org.sysess.sympathy.machinelearning.mini_batch_k_means'
tags = Tags(Tag.MachineLearning.Unsupervised)
descriptor = Descriptor()
descriptor.name = name
info = [
[
"Model",
{'name': 'n_clusters',
'dispname': 'Number of clusters/centroids',
'type': IntType(default=8)},
{'name': 'max_no_improvement',
'dispname': 'Consecutive batches without improvement',
'type': UnionType([IntType(), NoneType()], default=10)},
{'name': 'batch_size',
'dispname': 'Mini-batch size',
'type': IntType(default=100, min_value=1)},
{'name': 'init',
'dispname': 'Initialization method',
'type': StringSelectionType(
['k-means++', 'random'], default='k-means++')},
{'name': 'compute_labels',
'dispname': 'Compute label assignment',
'type': BoolType(default=True)},
],
[
"Solver",
{'name': 'max_iter',
'dispname': 'Maximum number of iterations',
'type': IntType(default=300)},
{'name': 'tol',
'dispname': 'Tolerance',
'type': FloatType(min_value=0, default=1e-4)},
{'name': 'init_size',
'dispname': 'Number of random samples',
'type': IntType(default=300, min_value=1)},
{'name': 'n_init',
'dispname': 'Number of random initializations',
'type': IntType(default=3)},
{'name': 'reassignment_ratio',
'dispname': 'Reassignment ratio',
'type': FloatType(default=0.01)},
{'name': 'random_state',
'dispname': 'Random seed',
'type': UnionType([NoneType(), IntType()], default=None)},
]
]
descriptor.set_info(info, doc_class=sklearn.cluster.MiniBatchKMeans)
descriptor.set_attributes([
{'name': attr_name} for attr_name in [
'cluster_centers_', 'labels_', 'inertia_'
]], doc_class=sklearn.cluster.MiniBatchKMeans)
parameters = synode.parameters()
SyML_abstract.generate_parameters(parameters, descriptor)
inputs = Ports([])
outputs = Ports([ModelPort('Model', 'model')])
__doc__ = SyML_abstract.generate_docstring(
description, descriptor.info, descriptor.attributes, inputs, outputs)
def execute(self, node_context):
model = node_context.output['model']
desc = self.__class__.descriptor
model.set_desc(desc)
kwargs = self.__class__.descriptor.get_parameters(
node_context.parameters)
skl = sklearn.cluster.MiniBatchKMeans(**kwargs)
model.set_skl(skl)
model.save()