Text Count Vectorizer¶
Convert a collection of text documents to a matrix of token counts
Documentation
Convert a collection of text documents to a matrix of token counts
Configuration:
encoding
If bytes or files are given to analyze, this encoding is used to decode.
decode_error
Instruction on what to do if a byte sequence is given to analyze that contains characters not of the given encoding. By default, it is ‘strict’, meaning that a UnicodeDecodeError will be raised. Other values are ‘ignore’ and ‘replace’.
strip_accents
Remove accents and perform other character normalization during the preprocessing step. ‘ascii’ is a fast method that only works on characters that have an direct ASCII mapping. ‘unicode’ is a slightly slower method that works on any characters. None (default) does nothing.
Both ‘ascii’ and ‘unicode’ use NFKD normalization from
unicodedata.normalize()
.lowercase
Convert all characters to lowercase before tokenizing.
analyzer
Whether the feature should be made of word n-gram or character n-grams. Option ‘char_wb’ creates character n-grams only from text inside word boundaries; n-grams at the edges of words are padded with space.
If a callable is passed it is used to extract the sequence of features out of the raw, unprocessed input.
Changed in version 0.21.
Since v0.21, if
input
isfilename
orfile
, the data is first read from the file and then passed to the given callable analyzer.ngram_range
The lower and upper boundary of the range of n-values for different word n-grams or char n-grams to be extracted. All values of n such such that min_n <= n <= max_n will be used. For example an
ngram_range
of(1, 1)
means only unigrams,(1, 2)
means unigrams and bigrams, and(2, 2)
means only bigrams. Only applies ifanalyzer
is not callable.stop_words
If ‘english’, a built-in stop word list for English is used. There are several known issues with ‘english’ and you should consider an alternative (see stop_words).
If a list, that list is assumed to contain stop words, all of which will be removed from the resulting tokens. Only applies if
analyzer == 'word'
.If None, no stop words will be used. max_df can be set to a value in the range [0.7, 1.0) to automatically detect and filter stop words based on intra corpus document frequency of terms.
max_df
When building the vocabulary ignore terms that have a document frequency strictly higher than the given threshold (corpus-specific stop words). If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None.
min_df
When building the vocabulary ignore terms that have a document frequency strictly lower than the given threshold. This value is also called cut-off in the literature. If float, the parameter represents a proportion of documents, integer absolute counts. This parameter is ignored if vocabulary is not None.
max_features
If not None, build a vocabulary that only consider the top max_features ordered by term frequency across the corpus.
This parameter is ignored if vocabulary is not None.
binary
If True, all non zero counts are set to 1. This is useful for discrete probabilistic models that model binary events rather than integer counts.
Attributes:
vocabulary_
A mapping of terms to feature indices.
stop_words_
Terms that were ignored because they either:
occurred in too many documents (max_df)
occurred in too few documents (min_df)
were cut off by feature selection (max_features).
This is only available if no vocabulary was given.
Input ports:
- Output ports:
- modelmodel
Model
Definition
Input ports
Output ports
- model
model
Model
- class node_text.CountVectorizer[source]