# This file is part of Sympathy for Data.
# Copyright (c) 2017, Combine Control Systems AB
#
# Sympathy for Data is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, version 3 of the License.
#
# Sympathy for Data is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Sympathy for Data.  If not, see <http://www.gnu.org/licenses/>.
from distutils.version import LooseVersion
import sklearn
import sklearn.svm
from sympathy.api import node
from sympathy.api.nodeconfig import Ports, Tag, Tags
from sylib.machinelearning.model import ModelPort
from sylib.machinelearning.abstract_nodes import SyML_abstract
from sylib.machinelearning.utility import names_from_x
from sylib.machinelearning.descriptors import Descriptor
from sylib.machinelearning.descriptors import BoolType
from sylib.machinelearning.descriptors import FloatType
from sylib.machinelearning.descriptors import IntType
from sylib.machinelearning.descriptors import NoneType
from sylib.machinelearning.descriptors import StringSelectionType
from sylib.machinelearning.descriptors import UnionType
[docs]class SupportVectorClassifier(SyML_abstract, node.Node):
    name = 'Support Vector Classifier'
    author = 'Mathias Broxvall'
    version = '0.1'
    icon = 'svm.svg'
    description = 'Support vector machine (SVM) based classifier'
    nodeid = 'org.sysess.sympathy.machinelearning.svc'
    tags = Tags(Tag.MachineLearning.Supervised)
    descriptor = Descriptor()
    descriptor.name = name
    info = [
        [
            "Model",
            {'name': 'C',
             'dispname': 'Penalty parameter C',
             'type': FloatType(min_value=0.0, default=1.0)},
            {'name': 'kernel',
             'dispname': 'Kernel',
             'type': StringSelectionType([
                  'rbf', 'linear', 'poly', 'sigmoid', 'precomputed'],
                default='rbf')},
        ],
        [
            "Advanced",
            {'name': 'degree',
             'dispname': 'Polynomial kernel degree',
             'type': IntType(min_value=1, default=3)},
            {'name': 'gamma',
             'dispname': 'Kernel coefficient',
             'type': UnionType([
                 FloatType(), StringSelectionType(['auto'])],
                default='auto')},
            {'name': 'coef0',
             'dispname': 'Independent kernel function term',
             'type': FloatType(default=0.0)},
            {'name': 'probability',
             'dispname': 'Enable probability estimates',
             'type': BoolType(default=False)},
            {'name': 'shrinking',
             'dispname': 'Use shrinking heuristic',
             'type': BoolType(default=True)},
            {'name': 'class_weight',
             'dispname': 'Class weight',
             'type': UnionType([NoneType(), StringSelectionType(['balanced'])],
                               default=None)},
        ],
        [
            "Solver",
            {'name': 'tol',
             'dispname': 'Tolerance',
             'type': FloatType(default=1e-3)},
            {'name': 'max_iter',
             'dispname': 'Hard iteration limit',
             'type': IntType(min_value=-1)},
            {'name': 'random_state',
             'dispname': 'Random seed',
             'type': UnionType([IntType(), NoneType()], default=None)},
        ]
    ]
    descriptor.set_info(info, doc_class=sklearn.svm.SVC)
    descriptor.set_attributes([
        {'name': 'support_', },
        {'name': 'support_vectors_', 'cnames': names_from_x},
        {'name': 'n_support_'},
        {'name': 'dual_coef_'},
        {'name': 'coef_', 'cnames': names_from_x},
        {'name': 'intercept_'},
    ], doc_class=sklearn.svm.SVC)
    parameters = node.parameters()
    SyML_abstract.generate_parameters(parameters, descriptor)
    inputs = Ports([])
    outputs = Ports([ModelPort('Model', 'model')])
    __doc__ = SyML_abstract.generate_docstring(
        description, descriptor.info, descriptor.attributes, inputs, outputs)
    def execute(self, node_context):
        model = node_context.output['model']
        desc = self.__class__.descriptor
        model.set_desc(desc)
        kwargs = self.__class__.descriptor.get_parameters(
            node_context.parameters)
        skl = sklearn.svm.SVC(**kwargs)
        model.set_skl(skl)
        model.save() 
def _one_class_svm_info():
    model_info = [
        "Model",
        {'name': 'kernel',
         'dispname': 'Kernel',
         'type': StringSelectionType(
             ['rbf', 'linear', 'poly', 'sigmoid', 'precomputed'],
             default='rbf')},
        {'name': 'nu',
         'dispname': 'Upper/lower fraction bound',
         'type': FloatType(min_value=0, max_value=1, default=0.5)},
    ]
    advanced_info = [
        "Advanced",
        {'name': 'degree',
         'dispname': 'Polynomial kernel degree',
         'type': IntType(min_value=1, default=3)},
        {'name': 'gamma',
         'dispname': 'Kernel coefficient',
         'type': UnionType([
             FloatType(), StringSelectionType(['auto'])],
                           default='auto')},
        {'name': 'coef0',
         'dispname': 'Independent kernel function term',
         'type': FloatType(default=0.0)},
        {'name': 'shrinking',
         'dispname': 'Use shrinking heuristic',
         'type': BoolType(default=True)},
    ]
    solver_info = [
        "Solver",
        {'name': 'tol',
            'dispname': 'Tolerance',
            'type': FloatType(default=1e-3)},
        {'name': 'max_iter',
            'dispname': 'Hard iteration limit',
            'type': IntType(min_value=-1)},
    ]
    # Earlier versions of sklearn and sympathy supported the random_state
    # parameter. It is deprecated and ignored in sklearn>=0.20 and removed in
    # sklearn>=0.22.
    if LooseVersion(sklearn.__version__) < LooseVersion('0.20'):
        solver_info.append({
            'name': 'random_state',
            'dispname': 'Random seed',
            'type': UnionType([IntType(), NoneType()], default=None),
        })
    return [model_info, advanced_info, solver_info]
[docs]class OneClassSVM(SyML_abstract, node.Node):
    name = 'One Class Support Vector Machines'
    author = 'Mathias Broxvall'
    version = '0.1'
    icon = 'outliers.svg'
    description = (
        'Unsupervised outlier detection based on support vector machines'
    )
    nodeid = 'org.sysess.sympathy.machinelearning.one_class_svm'
    tags = Tags(Tag.MachineLearning.Unsupervised)
    descriptor = Descriptor()
    descriptor.name = name
    info = _one_class_svm_info()
    descriptor.set_info(info, doc_class=sklearn.svm.OneClassSVM)
    descriptor.set_attributes([
        {'name': 'support_', },
        {'name': 'support_vectors_', 'cnames': names_from_x},
        {'name': 'dual_coef_'},
        {'name': 'coef_', 'cnames': names_from_x},
        {'name': 'intercept_'},
    ], doc_class=sklearn.svm.OneClassSVM)
    parameters = node.parameters()
    SyML_abstract.generate_parameters(parameters, descriptor)
    inputs = Ports([])
    outputs = Ports([ModelPort('Model', 'model')])
    __doc__ = SyML_abstract.generate_docstring(
        description, descriptor.info, descriptor.attributes, inputs, outputs)
    def execute(self, node_context):
        model = node_context.output['model']
        desc = self.__class__.descriptor
        model.set_desc(desc)
        kwargs = self.__class__.descriptor.get_parameters(
            node_context.parameters)
        skl = sklearn.svm.OneClassSVM(**kwargs)
        model.set_skl(skl)
        model.save()