# This file is part of Sympathy for Data.
# Copyright (c) 2018 Combine Control Systems AB
#
# Sympathy for Data is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, version 3 of the License.
#
# Sympathy for Data is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Sympathy for Data.  If not, see <http://www.gnu.org/licenses/>.
import numpy as np
from sympathy.api import node as synode
from sympathy.api import dtypes
from sympathy.api.nodeconfig import (Port, Ports, Tag, Tags,
                                     adjust)
from sympathy.api import exceptions as syexc
class ConvertError(Exception):
    pass
MASKED_NODEIDS = [
    'org.sysess.sympathy.table.fillmaskedvalues',
    'org.sysess.sympathy.table.maskvalues',
    'org.sysess.sympathy.table.dropmaskvalues',
]
_config_error_msg = (
    'Failure in column {column}: could not convert {name}: '
    '"{value}" to {type}.')
def _convert(value, dtype, name):
    try:
        return dtypes.numpy_value_from_dtype_str(dtype, value)
    except ValueError:
        raise ConvertError(
            dict(name=name, value=value, type=dtypes.typename_from_kind(
                dtype.kind)))
def selected_columns_op(input_table, output_table, columns, set_progress,
                        update=True):
    if update:
        output_table.set_name(input_table.get_name())
        output_table.set_table_attributes(input_table.get_table_attributes())
    column_names = input_table.column_names()
    selected_names = set(columns.selected_names(column_names))
    n_column_names = len(column_names)
    for i, name in enumerate(column_names):
        set_progress(i * (100. / n_column_names))
        if name in selected_names:
            yield name
        elif update:
            output_table.update_column(name, input_table, name)
[docs]class FillMaskedTable(synode.Node):
    """
    Fill masked values in Table.
    """
    author = 'Erik der Hagopian'
    description = 'Fill masked values in Table.'
    icon = 'select_table_columns.svg'
    name = 'Fill masked values in Table'
    nodeid = 'org.sysess.sympathy.table.fillmaskedvalues'
    tags = Tags(Tag.DataProcessing.Select)
    version = '1.0'
    related = (MASKED_NODEIDS
               + ['org.sysess.sympathy.data.table.holdvaluetable'])
    inputs = Ports([Port.Table('Input')])
    outputs = Ports([Port.Table('Output')])
    parameters = synode.parameters()
    parameters.set_list(
        'columns', label='Select columns', description='Select columns.',
        value=[], editor=synode.Editors.multilist_editor(edit=True))
    parameters['columns']._passthrough = True
    parameters.set_string(
        'value', label='Value', description='Specified fill value',
        value='')
    def adjust_parameters(self, node_context):
        adjust(node_context.parameters['columns'], node_context.input[0])
    def execute(self, node_context):
        in_table = node_context.input[0]
        out_table = node_context.output[0]
        self.fill_columns(
            in_table, out_table, node_context.parameters['columns'],
            self.set_progress, node_context.parameters['value'])
    @staticmethod
    def fill_columns(input_table, output_table, columns, set_progress, fill):
        def fill_conv(column):
            dtype = dtypes.numpy_dtype_factory_for_dtype(
                column.dtype)
            value = _convert(fill.value, dtype, 'Value')
            return column.filled(value)
        for name in selected_columns_op(input_table, output_table, columns,
                                        set_progress):
            array = input_table.get_column_to_array(name)
            if isinstance(array, np.ma.MaskedArray):
                try:
                    output_table.set_column_from_array(
                        name, fill_conv(array))
                    output_table.set_column_attributes(
                        name, input_table.get_column_attributes(name))
                except ConvertError as ce:
                    raise syexc.SyConfigurationError(_config_error_msg.format(
                        column=name, **ce.args[0]))
            else:
                output_table.update_column(name, input_table, name) 
[docs]class MaskTable(synode.Node):
    """
    Mask values in Table.
    """
    author = 'Erik der Hagopian'
    description = 'Mask values in Table.'
    icon = 'select_table_columns.svg'
    name = 'Mask values in Table'
    nodeid = 'org.sysess.sympathy.table.maskvalues'
    tags = Tags(Tag.DataProcessing.Select)
    version = '1.0'
    related = MASKED_NODEIDS
    inputs = Ports([Port.Table('Input')])
    outputs = Ports([Port.Table('Output')])
    parameters = synode.parameters()
    parameters.set_list(
        'columns', label='Select columns', description='Select columns.',
        value=[], editor=synode.Editors.multilist_editor(edit=True))
    parameters['columns']._passthrough = True
    parameters.set_string(
        'value', label='Value', description='Specified fill value',
        value='')
    def adjust_parameters(self, node_context):
        adjust(node_context.parameters['columns'], node_context.input[0])
    def execute(self, node_context):
        in_table = node_context.input[0]
        out_table = node_context.output[0]
        self.mask_columns(
            in_table, out_table, node_context.parameters['columns'],
            self.set_progress, node_context.parameters['value'])
    @staticmethod
    def mask_columns(input_table, output_table, columns, set_progress, fill):
        def mask_conv(column):
            dtype = dtypes.numpy_dtype_factory_for_dtype(
                column.dtype)
            value = _convert(fill.value, dtype, 'Value')
            if dtype.kind == 'f' and np.isnan(value):
                mask = np.isnan(column)
            elif dtype.kind in ['m', 'M'] and np.isnat(value):
                mask = np.isnat(column)
            else:
                mask = column == value
            if isinstance(column, np.ma.MaskedArray):
                mask |= column.mask
                res = np.ma.MaskedArray(column.data, mask, dtype=dtype)
            else:
                res = np.ma.MaskedArray(column, mask, dtype=dtype)
            return res
        for name in selected_columns_op(input_table, output_table, columns,
                                        set_progress):
            try:
                output_table.set_column_from_array(
                    name, mask_conv(input_table.get_column_to_array(name)))
                output_table.set_column_attributes(
                    name, input_table.get_column_attributes(name))
            except ConvertError as ce:
                raise syexc.SyConfigurationError(_config_error_msg.format(
                    column=name, **ce.args[0])) 
[docs]class DropMaskTable(synode.Node):
    author = 'Erik der Hagopian'
    description = 'Drop either rows or columns with any masked values.'
    icon = 'select_table_columns.svg'
    name = 'Drop masked values in Table'
    nodeid = 'org.sysess.sympathy.table.dropmaskvalues'
    tags = Tags(Tag.DataProcessing.Select)
    version = '1.0'
    related = MASKED_NODEIDS + ['org.sysess.sympathy.data.table.dropnantable']
    inputs = Ports([Port.Table('Input')])
    outputs = Ports([Port.Table('Output')])
    parameters = synode.parameters()
    parameters.set_list(
        'columns', label='Select columns', description='Select columns.',
        value=[], editor=synode.Editors.multilist_editor(edit=True))
    parameters['columns']._passthrough = True
    directions = ['Rows', 'Columns']
    parameters.set_string(
        'direction', label='Drop',
        value=directions[0],
        description='Select along which axis to drop values',
        editor=synode.Editors.combo_editor(options=directions))
    def adjust_parameters(self, node_context):
        adjust(node_context.parameters['columns'], node_context.input[0])
    def execute(self, node_context):
        in_table = node_context.input[0]
        out_table = node_context.output[0]
        self.drop_columns(
            in_table, out_table, node_context.parameters['columns'],
            self.set_progress, node_context.parameters['direction'])
    @staticmethod
    def drop_columns(input_table, output_table, columns, set_progress,
                     direction):
        if direction.value == 'Columns':
            for name in selected_columns_op(input_table, output_table, columns,
                                            set_progress):
                array = input_table.get_column_to_array(name)
                if isinstance(array, np.ma.MaskedArray):
                    if not np.any(array.mask):
                        output_table.set_column_from_array(
                            name, array.data)
                        output_table.set_column_attributes(
                            name, input_table.get_column_attributes(name))
                else:
                    output_table.update_column(name, input_table, name)
        elif direction.value == 'Rows':
            mask = np.zeros(input_table.number_of_rows(), dtype=bool)
            for name in selected_columns_op(input_table, output_table, columns,
                                            set_progress, update=False):
                array = input_table.get_column_to_array(name)
                if isinstance(array, np.ma.MaskedArray):
                    mask |= array.mask
            if not np.any(mask):
                output_table.update(input_table)
            else:
                for name in input_table.column_names():
                    array = input_table.get_column_to_array(name)
                    array = array[~mask]
                    if isinstance(array, np.ma.MaskedArray):
                        if not np.any(array.mask):
                            array = array.data
                    output_table.set_column_from_array(
                        name, array)
                    output_table.set_column_attributes(
                        name, input_table.get_column_attributes(name))