.. _`Adaptive Piecewise Constant Approximation (APCA)`: .. _`com.sympathyfordata.timeseriesanalysis.apca_transform`: Adaptive Piecewise Constant Approximation (APCA) ```````````````````````````````````````````````` .. image:: apca.svg :width: 48 Applies the APCA algorithm to split the input time series into a number of constant-valued pieces of varying length while minimizing the mean-square error. It outputs a table containing indices for slices with meta values(e.g. errors) as table attributes. The second output contains approximated values and column attributes with per-column error Documentation ::::::::::::: The algorithm uses haar-transforms and heuristics for generating the segments, meaning that a global optima is not guaranteed Definition :::::::::: Input ports ........... **input** table input Output ports ............ **output indices** table output indices **output values** table output values Configuration ............. **Max error** (max_error) If non-zero then increase number of segments until error is less than this. Due to heuristic functions error may be overshoot slightly **Number of segments** (n_segments) Number of segments to generate **Select master column** (split column) The column on which the APCA algorithm is run, all other columns will be split using the same segments as those generated for the master column **Select time column** (time column) The time column is passed through without modification Examples ........ * :download:`apca.syx ` Implementation .............. .. automodule:: node_apca :noindex: .. class:: APCATransform :noindex: