Simulated Annealing Parameter Search¶

../../../../_images/annealing_hyperparam.svg
class node_paramsearch.ParameterSearch_SimulatedAnnealing[source]¶

Uses simulated annealing to find the optimal parameters by considering a hyper cube of all possible indices to the given parameter table. Each column of the parameter table corresponds to one axis of this cube with a range corresponding to the non-masked rows of the parameter table. The radius for the annealing process assumes that all axes have unit length regardless of the number of non-masked rows. This node should be considered _experimental_ and may change in the future

Configuration:
  • cv

    Number of fold in the default K-Fold cross validation. Ignored when cross-validation port is given

  • n_iter

    Number of randomized searches done

  • cooling

    Method for lowering temperature

  • cooling_arg

    Argument A to cooling method. Exponential: T=A^t Linear ignores A Logarithmic: T=A/log(1+t)

Inputs:
in-model : model

in-model

parameter space : table

param-space

X : table

X

Y : table

Y

cross-validation : [(table,table)]

cross-validation

Outputs:
results : table

results

parameters : table

parameters

out-model : model

out-model

Logo

Related Topics

  • Documentation overview
    • Library
      • Sympathy
        • Machinelearning
          • Previous: Randomized Parameter Search
          • Next: Kernel Principal Component Analysis (KPCA)

This Page

  • Show Source

Quick search

©2013-2018, SysESS. All Rights Reserved. | Powered by Sphinx 1.6.5 & Alabaster 0.7.6 | Page source