# Copyright (c) 2017, System Engineering Software Society
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#     * Redistributions of source code must retain the above copyright
#       notice, this list of conditions and the following disclaimer.
#     * Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#     * Neither the name of the System Engineering Software Society nor the
#       names of its contributors may be used to endorse or promote products
#       derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED.
# IN NO EVENT SHALL SYSTEM ENGINEERING SOFTWARE SOCIETY BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
Some of the docstrings for this module have been automatically
extracted from the `scikit-learn <http://scikit-learn.org/>`_ library
and are covered by their respective licenses.
"""
from __future__ import (print_function, division, unicode_literals,
                        absolute_import)
import sklearn
import sklearn.linear_model
import sklearn.kernel_ridge
from sympathy.api import node
from sympathy.api.nodeconfig import Ports, Tag, Tags
from sylib.machinelearning.model import ModelPort
from sylib.machinelearning.abstract_nodes import SyML_abstract
from sylib.machinelearning.utility import names_from_x
from sylib.machinelearning.utility import names_from_y
from sylib.machinelearning.descriptors import Descriptor
from sylib.machinelearning.descriptors import BoolType
from sylib.machinelearning.descriptors import FloatType
from sylib.machinelearning.descriptors import IntType
from sylib.machinelearning.descriptors import NoneType
from sylib.machinelearning.descriptors import StringSelectionType
from sylib.machinelearning.descriptors import UnionType
[docs]class LinearRegression(SyML_abstract, node.Node):
    name = 'Linear Regression'
    author = 'Mathias Broxvall'
    copyright = '(C) 2017 System Engineering Software Society'
    version = '0.1'
    icon = 'linear_regression.svg'
    description = 'Ordinary linear regression'
    nodeid = 'org.sysess.sympathy.machinelearning.linearregression'
    tags = Tags(Tag.MachineLearning.Regression)
    descriptor = Descriptor()
    descriptor.name = name
    descriptor.set_info([
        {'name': 'fit_intercept',
         'type': BoolType(default=True)},
        {'name': 'normalize',
         'type': BoolType(default=False)},
        {'name': 'n_jobs',
         'type': IntType(min_value=1, default=1)},
    ], doc_class=sklearn.linear_model.LinearRegression)
    descriptor.set_attributes([
        {'name': attr_name} for attr_name in [
            'coef_', 'intercept_', 'residues_',
        ]], doc_class=sklearn.linear_model.LinearRegression)
    parameters = node.parameters()
    SyML_abstract.generate_parameters(parameters, descriptor)
    inputs = Ports([])
    outputs = Ports([ModelPort('Model', 'model')])
    __doc__ = SyML_abstract.generate_docstring(
        description, descriptor.info, descriptor.attributes, inputs, outputs)
    def execute(self, node_context):
        model = node_context.output['model']
        desc = self.__class__.descriptor
        model.set_desc(desc)
        kwargs = self.__class__.descriptor.get_parameters(
            node_context.parameters)
        skl = sklearn.linear_model.LinearRegression(**kwargs)
        model.set_skl(skl)
        model.save() 
[docs]class LogisticRegression(SyML_abstract, node.Node):
    name = 'Logistic Regression'
    author = 'Mathias Broxvall'
    copyright = '(C) 2017 System Engineering Software Society'
    version = '0.1'
    icon = 'logistic_regression.svg'
    description = 'Logistic regression of a categorical dependent variable'
    nodeid = 'org.sysess.sympathy.machinelearning.logisticregression'
    tags = Tags(Tag.MachineLearning.Supervised)
    descriptor = Descriptor()
    descriptor.name = name
    descriptor.set_info([
        ['Options',
         {'name': 'penalty',
          'type': StringSelectionType(['l1', 'l2'], default='l2')},
         {'name': 'dual',
          'type': BoolType(default=False)},
         {'name': 'C',
          'type': FloatType(min_value=0, default=1.0)},
         {'name': 'fit_intercept',
          'type': BoolType(default=True)},
         {'name': 'intercept_scaling',
          'type': FloatType(default=1.0)},
         {'name': 'class_weight',
          'type': UnionType([
              NoneType(), StringSelectionType(['balanced'])], default=None)},
         {'name': 'tol',
          'type': FloatType(default=1e-4)},
         {'name': 'multi_class',
          'type': StringSelectionType(['ovr', 'multinomial'], default='ovr')},
        ],
        ['Solver',
         {'name': 'max_iter',
          'type': IntType(min_value=0, default=100)},
         {'name': 'solver',
          'type': StringSelectionType(
              ['newton-cg', 'lbfgs', 'liblinear', 'sag'],
              default='liblinear')},
         {'name': 'n_jobs',
          'desc': (
              'Number of CPU cores used when parallelizing over classes if '
              'multi_class="ovr". Ignored when the solver is set to '
              '"liblinear" regardless of multi_class. If given -1 then all '
              'cores are used'),
          'type': IntType(min_value=1, default=1)},
        ],
        ['Model state',
         {'name': 'random_state',
          'type': UnionType([NoneType(), IntType()], default=None)},
         {'name': 'warm_start', 'type': BoolType(default=False)},
        ],
    ], doc_class=sklearn.linear_model.LogisticRegression)
    descriptor.set_attributes([
        {'name': 'n_iter_'},
        {'name': 'coef_', 'cnames': names_from_x },
        {'name': 'intercept_' },
    ], doc_class=sklearn.linear_model.LogisticRegression)
    parameters = node.parameters()
    SyML_abstract.generate_parameters(parameters, descriptor)
    inputs = Ports([])
    outputs = Ports([ModelPort('Model', 'model')])
    __doc__ = SyML_abstract.generate_docstring(
        description, descriptor.info, descriptor.attributes, inputs, outputs)
    def execute(self, node_context):
        model = node_context.output['model']
        desc = self.__class__.descriptor
        model.set_desc(desc)
        kwargs = self.__class__.descriptor.get_parameters(
            node_context.parameters)
        skl = sklearn.linear_model.LogisticRegression(**kwargs)
        model.set_skl(skl)
        model.save() 
[docs]class KernelRidge(SyML_abstract, node.Node):
    name = 'Kernel Ridge Regression'
    author = 'Mathias Broxvall'
    copyright = '(C) 2017 System Engineering Software Society'
    version = '0.1'
    icon = 'kernel_ridge.svg'
    description = (
        'Kernel Ridge based classifier combining ridge regression '
        '(linear least-squares L2-norm) regression with the kernel trick')
    nodeid = 'org.sysess.sympathy.machinelearning.kernel_ridge'
    tags = Tags(Tag.MachineLearning.Regression)
    descriptor = Descriptor()
    descriptor.name = name
    descriptor.set_info([
        {'name': 'alpha',
         'type': FloatType(min_value=0, default=1.0)},
        {'name': 'kernel',
         'type': StringSelectionType(
             ['linear', 'rbf', 'poly', 'sigmoid', 'cosine',
              'laplacian', 'chi2'], default='rbf')},
        {'name': 'gamma',
         'type': UnionType([NoneType(), FloatType()], default=None)},
        {'name': 'coef0',
         'type': FloatType(default=1.0)},
        {'name': 'degree',
         'type': IntType(min_value=1, default=3)},
         ], doc_class=sklearn.kernel_ridge.KernelRidge)
    descriptor.set_attributes([
        {'name': 'dual_coef_', 'cnames': names_from_y},
        {'name': 'X_fit_', 'cnames': names_from_x},
    ], doc_class=sklearn.kernel_ridge.KernelRidge)
    parameters = node.parameters()
    SyML_abstract.generate_parameters(parameters, descriptor)
    inputs = Ports([])
    outputs = Ports([ModelPort('Model', 'model')])
    __doc__ = SyML_abstract.generate_docstring(
        description, descriptor.info, descriptor.attributes, inputs, outputs)
    def execute(self, node_context):
        model = node_context.output['model']
        desc = self.__class__.descriptor
        model.set_desc(desc)
        kwargs = self.__class__.descriptor.get_parameters(
            node_context.parameters)
        skl = sklearn.kernel_ridge.KernelRidge(**kwargs)
        model.set_skl(skl)
        model.save() 
[docs]class SupportVectorRegression(SyML_abstract, node.Node):
    name = 'Epsilon Support Vector Regression'
    author = 'Mathias Broxvall'
    copyright = '(C) 2017 System Engineering Software Society'
    version = '0.1'
    icon = 'svm.svg'
    description = 'Support vector machine based regressor (SVR)'
    nodeid = 'org.sysess.sympathy.machinelearning.svr'
    tags = Tags(Tag.MachineLearning.Regression)
    descriptor = Descriptor()
    descriptor.name = name
    descriptor.set_info([
        {'name': 'C',
         'type': FloatType(default=1.0)},
        {'name': 'kernel',
         'type': StringSelectionType(
             ['linear', 'rbf', 'poly', 'sigmoid'], default='rbf')},
        {'name': 'gamma',
         'type': UnionType([
             StringSelectionType(['auto']), FloatType()], default='auto')},
        {'name': 'epsilon',
         'type': FloatType(default=0.1)},
        {'name': 'coef0',
         'type': FloatType(default=0.0)},
        {'name': 'tol',
         'type': FloatType(default=1e-3)},
        {'name': 'degree',
         'type': IntType(min_value=1, default=3)},
        {'name': 'shrinking',
         'type': BoolType(default=True)},
        {'name': 'max_iter',
         'type': IntType(default=-1)},
    ], doc_class=sklearn.svm.SVR)
    descriptor.set_attributes([
        {'name': 'support_', },
        {'name': 'support_vectors_', 'cnames': names_from_x},
        {'name': 'dual_coef_'},
        {'name': 'intercept_'},
        {'name': 'coef_', 'cnames': names_from_x},
    ], doc_class=sklearn.svm.SVR)
    parameters = node.parameters()
    SyML_abstract.generate_parameters(parameters, descriptor)
    inputs = Ports([])
    outputs = Ports([ModelPort('Model', 'model')])
    __doc__ = SyML_abstract.generate_docstring(
        description, descriptor.info, descriptor.attributes, inputs, outputs)
    def execute(self, node_context):
        model = node_context.output['model']
        desc = self.__class__.descriptor
        model.set_desc(desc)
        kwargs = self.__class__.descriptor.get_parameters(
            node_context.parameters)
        skl = sklearn.svm.SVR(**kwargs)
        model.set_skl(skl)
        model.save()