# -*- coding: utf-8 -*-
# Copyright (c) 2016, System Engineering Software Society
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the System Engineering Software Society nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED.
# IN NO EVENT SHALL SYSTEM ENGINEERING SOFTWARE SOCIETY BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
from __future__ import (print_function, division, unicode_literals,
absolute_import)
import numpy as np
from sympathy.api import node as synode
from sympathy.api.nodeconfig import Port, Ports, Tag, Tags, adjust
from sympathy.api.exceptions import SyConfigurationError
[docs]class HistogramCalculation(synode.Node):
"""
This node takes a table and calculates a histogram from one of its columns.
The output consists of bin edges and bin values and can for instance be
used in a histogram plot in the node :ref:`Figure from Table`.
Masked values in the data column are ignored. Masked values in the weights
column are treated as 1.
"""
author = 'Magnus Sandén <magnus.sanden@combine.se'
copyright = "(C) 2016 System Engineering Software Society"
version = '0.1'
icon = 'histogram_calculation.svg'
name = 'Histogram calculation'
description = 'Calculate the histogram of a given signal.'
nodeid = 'org.sysess.sympathy.dataanalysis.histogramcalc'
tags = Tags(Tag.Analysis.Statistic)
parameters = synode.parameters()
combo_editor = synode.editors.combo_editor()
combo_editor_w_empty = synode.editors.combo_editor(include_empty=True)
parameters.set_list('data_column', label="Data column:",
description='Column to create histogram for.',
editor=combo_editor)
parameters.set_list('weights_column', label="Weights column:",
description=('If you choose a weights column, '
'each value in the data column only '
'contributes its associated weight '
'towards the bin count, instead of 1.'),
editor=combo_editor_w_empty)
parameters.set_integer('bins', label="Bins:", value=10,
description='Number of bins.')
parameters.set_boolean('auto_range', label="Auto range", value=True,
description=('When checked, use data range as '
'histogram range.'))
parameters.set_float('x_min', label="X min:", value=0.0,
description='Minimum x value.')
parameters.set_float('x_max', label="X max:", value=1.0,
description='Maximum x value.')
parameters.set_boolean('normed', label="Density",
description=('When checked, the result is the '
'value of the probability density '
'function at each bin, normalized '
'such that the integral of the '
'histogram is 1.'))
controllers = synode.controller(
when=synode.field('auto_range', 'checked'),
action=(synode.field('x_min', 'disabled'),
synode.field('x_max', 'disabled')))
inputs = Ports([Port.Table('Input data', name='in')])
outputs = Ports([Port.Table('Histogram data', name='out')])
def update_parameters(self, parameters):
parameters['weights_column'].editor['include_empty'] = True
def adjust_parameters(self, node_context):
adjust(node_context.parameters['data_column'],
node_context.input['in'])
adjust(node_context.parameters['weights_column'],
node_context.input['in'])
def execute(self, node_context):
parameters = node_context.parameters
bins = parameters['bins'].value
density = parameters['normed'].value
data_column = parameters['data_column'].selected
auto_range = parameters['auto_range'].value
if not data_column:
raise SyConfigurationError('Please choose a data column.')
if auto_range:
range_ = None
else:
x_min = parameters['x_min'].value
x_max = parameters['x_max'].value
range_ = x_min, x_max
data = node_context.input['in'].get_column_to_array(data_column)
weights_column = parameters['weights_column'].selected
if not weights_column:
weights = None
else:
weights = node_context.input['in'].get_column_to_array(
weights_column)
# Handle masked arrays
if isinstance(weights, np.ma.MaskedArray):
weights.fill(1)
if isinstance(data, np.ma.MaskedArray):
mask = data.mask
data = data.compressed()
if weights is not None:
weights = weights[np.logical_not(mask)]
bin_values, bin_edges = np.histogram(
data, bins=bins, density=density, weights=weights, range=range_)
node_context.output['out'].set_column_from_array(
"Bin values", bin_values)
node_context.output['out'].set_column_from_array(
"Bin min edges", bin_edges[:-1])
node_context.output['out'].set_column_from_array(
"Bin max edges", bin_edges[1:])