# Copyright (c) 2017, System Engineering Software Society
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#     * Redistributions of source code must retain the above copyright
#       notice, this list of conditions and the following disclaimer.
#     * Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#     * Neither the name of the System Engineering Software Society nor the
#       names of its contributors may be used to endorse or promote products
#       derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED.
# IN NO EVENT SHALL SYSTEM ENGINEERING SOFTWARE SOCIETY BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
Some of the docstrings for this module have been automatically
extracted from the `scikit-learn <http://scikit-learn.org/>`_ library
and are covered by their respective licenses.
"""
from __future__ import (print_function, division, unicode_literals,
                        absolute_import)
import sklearn
import sklearn.cluster
from sympathy.api import node
from sympathy.api.nodeconfig import Ports, Tag, Tags
from sylib.machinelearning.model import ModelPort
from sylib.machinelearning.abstract_nodes import SyML_abstract
from sylib.machinelearning.descriptors import Descriptor
from sylib.machinelearning.descriptors import BoolType
from sylib.machinelearning.descriptors import FloatType
from sylib.machinelearning.descriptors import IntType
from sylib.machinelearning.descriptors import NoneType
from sylib.machinelearning.descriptors import StringSelectionType
from sylib.machinelearning.descriptors import UnionType
[docs]class KMeansClustering(SyML_abstract, node.Node):
    name = 'K-means Clustering'
    author = 'Mathias Broxvall'
    copyright = '(C) 2017 System Engineering Software Society'
    version = '0.1'
    icon = 'dataset_blobs.svg'
    description = (
        'Clusters data by trying to separate samples in n groups of equal '
        'variance')
    nodeid = 'org.sysess.sympathy.machinelearning.k_means'
    tags = Tags(Tag.MachineLearning.Unsupervised)
    descriptor = Descriptor()
    descriptor.name = name
    descriptor.set_info([
        {'name': 'n_clusters',
         'type': IntType(default=8)},
        {'name': 'max_iter',
         'type': IntType(default=300)},
        {'name': 'n_init',
         'type': IntType(default=10)},
        {'name': 'init',
         'type': StringSelectionType(
             ['k-means++', 'random'], default='k-means++')},
        {'name': 'algorithm',
         'type': StringSelectionType(
             ['auto', 'full', 'elkan'], default='auto')},
        {'name': 'precompute_distances',
         'type': UnionType([
             StringSelectionType(['auto']), BoolType()], default='auto')},
        {'name': 'tol',
         'type': FloatType(min_value=0, default=1e-4)},
        {'name': 'n_jobs',
         'type': IntType(min_value=1)},
        {'name': 'random_state',
          'type': UnionType([NoneType(), IntType()], default=None)},
    ], doc_class=sklearn.cluster.KMeans)
    descriptor.set_attributes([
        {'name': attr_name} for attr_name in [
            'cluster_centers_', 'labels_', 'inertia_'
        ]], doc_class=sklearn.cluster.KMeans)
    parameters = node.parameters()
    SyML_abstract.generate_parameters(parameters, descriptor)
    inputs = Ports([])
    outputs = Ports([ModelPort('Model', 'model')])
    __doc__ = SyML_abstract.generate_docstring(
        description, descriptor.info, descriptor.attributes, inputs, outputs)
    def execute(self, node_context):
        model = node_context.output['model']
        desc = self.__class__.descriptor
        model.set_desc(desc)
        kwargs = self.__class__.descriptor.get_parameters(
            node_context.parameters)
        skl = sklearn.cluster.KMeans(**kwargs)
        model.set_skl(skl)
        model.save() 
[docs]class MiniBatchKMeansClustering(SyML_abstract, node.Node):
    name = 'Mini-batch K-means Clustering'
    author = 'Mathias Broxvall'
    copyright = '(C) 2017 System Engineering Software Society'
    version = '0.1'
    icon = 'dataset_blobs.svg'
    description = (
        'Variant of the KMeans algorithm which uses mini-batches to reduce the '
        'computation time')
    nodeid = 'org.sysess.sympathy.machinelearning.mini_batch_k_means'
    tags = Tags(Tag.MachineLearning.Unsupervised)
    descriptor = Descriptor()
    descriptor.name = name
    descriptor.set_info([
        {'name': 'n_clusters',
         'type': IntType(default=8)},
        {'name': 'max_iter',
         'type': IntType(default=300)},
        {'name': 'max_no_improvement',
         'type': UnionType([IntType(), NoneType()], default=10)},
        {'name': 'batch_size',
         'type': IntType(default=100, min_value=1)},
        {'name': 'init_size',
         'type': IntType(default=300, min_value=1)},
        {'name': 'n_init',
         'type': IntType(default=3)},
        {'name': 'init',
         'type': StringSelectionType(
             ['k-means++', 'random'], default='k-means++')},
        {'name': 'compute_labels',
         'type': BoolType(default=True)},
        {'name': 'reassignment_ratio',
         'type': FloatType(default=0.01)},
        {'name': 'tol',
         'type': FloatType(min_value=0, default=1e-4)},
        {'name': 'random_state',
          'type': UnionType([NoneType(), IntType()], default=None)},
    ], doc_class=sklearn.cluster.MiniBatchKMeans)
    descriptor.set_attributes([
        {'name': attr_name} for attr_name in [
            'cluster_centers_', 'labels_', 'inertia_'
        ]], doc_class=sklearn.cluster.MiniBatchKMeans)
    parameters = node.parameters()
    SyML_abstract.generate_parameters(parameters, descriptor)
    inputs = Ports([])
    outputs = Ports([ModelPort('Model', 'model')])
    __doc__ = SyML_abstract.generate_docstring(
        description, descriptor.info, descriptor.attributes, inputs, outputs)
    def execute(self, node_context):
        model = node_context.output['model']
        desc = self.__class__.descriptor
        model.set_desc(desc)
        kwargs = self.__class__.descriptor.get_parameters(
            node_context.parameters)
        skl = sklearn.cluster.MiniBatchKMeans(**kwargs)
        model.set_skl(skl)
        model.save()