# Copyright (c) 2017, System Engineering Software Society
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the System Engineering Software Society nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED.
# IN NO EVENT SHALL SYSTEM ENGINEERING SOFTWARE SOCIETY BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
Some of the docstrings for this module have been automatically
extracted from the `scikit-learn <http://scikit-learn.org/>`_ library
and are covered by their respective licenses.
"""
from __future__ import (print_function, division, unicode_literals,
absolute_import)
import sklearn
import sklearn.ensemble
from sympathy.api import node
from sympathy.api.nodeconfig import Port, Ports, Tag, Tags
from sylib.machinelearning.model import ModelPort
from sylib.machinelearning.descriptors import *
from sylib.machinelearning.abstract_nodes import SyML_abstract
from sylib.machinelearning.utility import names_from_x
from sylib.machinelearning.decisiontrees import IsolationForestDescriptor
[docs]class IsolationForest(SyML_abstract, node.Node):
name = 'Isolation Forest'
author = 'Mathias Broxvall'
copyright = '(C) 2017 System Engineering Software Society'
version = '0.1'
icon = 'isolation_forest.svg'
description = (
'Predicts outliers based on minimum path length of random trees with '
'single nodes in the leafs.')
nodeid = 'org.sysess.sympathy.machinelearning.isolation_forest'
tags = Tags(Tag.MachineLearning.Unsupervised)
descriptor = IsolationForestDescriptor()
descriptor.name = name
descriptor.set_info([
{'name': 'n_estimators',
'type': IntType(min_value=0, default=100)},
{'name': 'max_samples',
'type': UnionType([
IntType(),
FloatType(),
StringSelectionType(['auto'])],
default='auto'),
'desc': (
'The number of samples to draw from X to train each base '
'estimator expressed as number of samples (int), or a '
'fraction of all samples (float). If "auto" then a maximum of '
'256 samples will be used (less when fewer input samples given)'
)},
{'name': 'contamination',
'type': FloatType(min_value=0, max_value=0.5, default=0.1)},
{'name': 'max_features',
'type': UnionType([
IntType(min_value=1),
FloatType(min_value=0.0, max_value=1.0)],
default=1.0)},
{'name': 'bootstrap',
'type': BoolType(default=False)},
{'name': 'n_jobs',
'type': IntType(min_value=-1, default=1)},
{'name': 'random_state',
'type': UnionType([
IntType(), NoneType()], default=None)},
], doc_class=sklearn.ensemble.IsolationForest)
descriptor.set_attributes([
{'name': 'estimators_samples_', },
{'name': 'max_samples_'},
], doc_class=sklearn.ensemble.IsolationForest)
parameters = node.parameters()
SyML_abstract.generate_parameters(parameters, descriptor)
inputs = Ports([])
outputs = Ports([ModelPort('Model', 'model')])
__doc__ = SyML_abstract.generate_docstring(
description, descriptor.info, descriptor.attributes, inputs, outputs)
def execute(self, node_context):
model = node_context.output['model']
desc = self.__class__.descriptor
model.set_desc(desc)
kwargs = self.__class__.descriptor.get_parameters(
node_context.parameters)
skl = sklearn.ensemble.IsolationForest(**kwargs)
model.set_skl(skl)
model.save()